The reflexive and anti-reflexive solutions of the matrix equation AX=B

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized reflexive solutions of the matrix equation AXB=D and an associated optimal approximation problem

Generalized reflexive solutions of the matrix equation AXB = D and an associated optimal approximation problem a b s t r a c t

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

Diagonal and Monomial Solutions of the Matrix Equation AXB=C

In this article, we consider the matrix equation $AXB=C$, where A, B, C are given matrices and give new necessary and sufficient conditions for the existence of the diagonal solutions and monomial solutions to this equation. We also present a general form of such solutions. Moreover, we consider the least squares problem $min_X |C-AXB |_F$ where $X$ is a diagonal or monomial matrix. The explici...

متن کامل

An Efficient Algorithm for the Reflexive Solution of the Quaternion Matrix Equation AXB + CXHD = F

We propose an iterative algorithm for solving the reflexive solution of the quaternion matrix equation AXB + CXHD = F. When the matrix equation is consistent over reflexive matrix X, a reflexive solution can be obtained within finite iteration steps in the absence of roundoff errors. By the proposed iterative algorithm, the least Frobenius norm reflexive solution of the matrix equation can be d...

متن کامل

Anti-reflexive Solutions for a Class of Matrix Equations

In this paper, the generalized anti-reflexive solution for matrix equations (BX = C , XD = E), which arise in left and right inverse eigenpairs problem, is considered. With the special properties of generalized anti-reflexive matrices, the necessary and sufficient conditions for the solvability and a general expression of the solution are obtained. Furthermore, the related optimal approximation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2003

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(03)00607-4